合并个人喜好对于高级机器翻译任务至关重要。尽管机器翻译最近进步,但正确反映个人风格仍然是一项艰巨的任务。在本文中,我们引入了一个个性化的自动后编辑框架来应对这一挑战,该挑战有效地产生了考虑不同个人行为的句子。为了构建此框架,我们首先收集后编辑数据,该数据表示来自Live Machine Translation系统的用户偏好。具体而言,现实世界的用户输入源句子进行翻译,并根据用户的首选样式编辑机器翻译的输出。然后,我们提出了一个模型,该模型结合了APE框架上的歧视器模块和特定于用户的参数。实验结果表明,该方法的表现优于四个不同指标(即BLEU,TER,YISI-1和人类评估)的其他基线模型。
translated by 谷歌翻译
通过深度学习(DL)优于不同任务的常规方法,已经努力利用DL在各个领域中使用。交通域中的研究人员和开发人员还为预测任务(例如交通速度估算和到达时间)设计和改进了DL模型。但是,由于DL模型的黑盒属性和流量数据的复杂性(即时空依赖性),在分析DL模型方面存在许多挑战。我们与域专家合作,我们设计了一个视觉分析系统Attnanalyzer,该系统使用户能够探索DL模型如何通过允许有效的时空依赖性分析来进行预测。该系统结合了动态时间扭曲(DTW)和Granger因果关系测试,用于计算时空依赖性分析,同时提供映射,表格,线图和像素视图,以帮助用户执行依赖性和模型行为分析。为了进行评估,我们提出了三个案例研究,表明Attnanalyzer如何有效地探索模型行为并改善两个不同的道路网络中的模型性能。我们还提供域专家反馈。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
The crystallization of modeling methods around the Transformer architecture has been a boon for practitioners. Simple, well-motivated architectural variations can transfer across tasks and scale, increasing the impact of modeling research. However, with the emergence of state-of-the-art 100B+ parameters models, large language models are increasingly expensive to accurately design and train. Notably, it can be difficult to evaluate how modeling decisions may impact emergent capabilities, given that these capabilities arise mainly from sheer scale alone. In the process of building BLOOM--the Big Science Large Open-science Open-access Multilingual language model--our goal is to identify an architecture and training setup that makes the best use of our 1,000,000 A100-GPU-hours budget. Specifically, we perform an ablation study at the billion-parameter scale comparing different modeling practices and their impact on zero-shot generalization. In addition, we study the impact of various popular pre-training corpora on zero-shot generalization. We also study the performance of a multilingual model and how it compares to the English-only one. Finally, we consider the scaling behaviour of Transformers to choose the target model size, shape, and training setup. All our models and code are open-sourced at https://huggingface.co/bigscience .
translated by 谷歌翻译
随着机器学习变得普遍,减轻培训数据中存在的任何不公平性变得至关重要。在公平的各种概念中,本文的重点是众所周知的个人公平,该公平规定应该对类似的人进行类似的对待。虽然在训练模型(对处理)时可以提高个人公平性,但我们认为在模型培训(预处理)之前修复数据是一个更基本的解决方案。特别是,我们表明标签翻转是改善个人公平性的有效预处理技术。我们的系统IFLIPPER解决了限制了个人公平性违规行为的最小翻转标签的优化问题,当培训数据中的两个类似示例具有不同的标签时,发生违规情况。我们首先证明问题是NP-HARD。然后,我们提出了一种近似的线性编程算法,并提供理论保证其结果与标签翻转数量有关的结果与最佳解决方案有多近。我们还提出了使线性编程解决方案更加最佳的技术,而不会超过违规限制。实际数据集上的实验表明,在看不见的测试集的个人公平和准确性方面,IFLIPPER显着优于其他预处理基线。此外,IFLIPPER可以与处理中的技术结合使用,以获得更好的结果。
translated by 谷歌翻译
组织病理学图像的出现取决于组织类型,染色和数字化过程。这些因素因来源而异,是域转移问题的潜在原因。由于这个问题,尽管深度学习模型在计算病理学中取得了巨大的成功,但在特定领域训练的模型当我们将其应用于另一个领域时,仍可能会表现出色。为了克服这一点,我们提出了一种称为PatchShuffling的新扩展,并为预训练的深度学习模型而被称为Impash的新型自我监视的对比学习框架。使用这些,我们获得了一个RESNET50编码器,该编码器可以提取对域移位抗性的图像表示。我们通过使用其他域普通化技术来比较了我们的派生表示形式,它们通过将它们用于结直肠组织图像的跨域分类。我们表明,所提出的方法优于其他传统的组织学领域适应和最先进的自我监督学习方法。代码可在以下网址获得:https://github.com/trinhvg/impash。
translated by 谷歌翻译
深度神经网络(DNN)的训练过程通常是用阶段进行管道的,用于在CPU上进行数据制备,然后对GPU等加速器进行梯度计算。在理想的管道中,端到端训练吞吐量最终受到加速器的吞吐量的限制,而不是数据准备。过去,DNN训练管道通过使用使用轻巧,有损的图像格式(如JPEG)编码的数据集实现了近乎最佳的吞吐量。但是,随着高分辨率,无损编码的数据集变得越来越流行,对于需要高精度的应用程序,由于CPU上的低通量图像解码,在数据准备阶段出现了性能问题。因此,我们提出了L3,这是一种用于高分辨率,高通量DNN训练的定制轻巧,无损的图像格式。 L3的解码过程在加速器上有效平行,从而最大程度地减少了在DNN培训期间进行数据制备的CPU干预。 L3比最流行的无损图像格式PNG获得了9.29倍的数据准备吞吐量,用于NVIDIA A100 GPU上的CityScapes数据集,该数据集可导致1.71倍更高的端到端训练吞吐量。与JPEG和WebP相比,两种流行的有损图像格式,L3分别以同等的度量性能为Imagenet提供高达1.77倍和2.87倍的端到端训练吞吐量。
translated by 谷歌翻译
大型标记数据集的可用性是深度学习成功的关键组成部分。但是,大型数据集上的标签通常很耗时且昂贵。主动学习是一个研究领域,通过选择最重要的标签样本来解决昂贵的标签问题。基于多样性的采样算法被称为基于表示的主动学习方法的组成部分。在本文中,我们介绍了一种新的基于多样性的初始数据集选择算法,以选择有效学习环境中初始标记的最有用的样本集。自我监督的表示学习用于考虑初始数据集选择算法中样品的多样性。此外,我们提出了一种新型的主动学习查询策略,该策略使用基于多样性的基于一致性的嵌入方式采样。通过考虑基于一致性的嵌入方案中多样性的一致性信息,该方法可以在半监督的学习环境中选择更多信息的样本来标记。比较实验表明,通过利用未标记的数据的多样性,与先前的主动学习方法相比,该提出的方法在CIFAR-10和CALTECH-101数据集上取得了令人信服的结果。
translated by 谷歌翻译
实际数据集中不可避免地有许多错误标记的数据。由于深度神经网络(DNNS)具有记忆标签的巨大能力,因此需要强大的训练方案来防止标签错误降低DNN的概括性能。当前的最新方法提出了一种共同训练方案,该方案使用与小损失相关的样本训练双网络。但是,实际上,培训两个网络可以同时负担计算资源。在这项研究中,我们提出了一种简单而有效的健壮培训计划,该计划仅通过培训一个网络来运行。在训练过程中,提出的方法通过从随机梯度下降优化形成的重量轨迹中抽样中间网络参数来生成时间自我启动。使用这些自我归档评估的损失总和用于识别错误标记的样品。同时,我们的方法通过将输入数据转换为各种形式,并考虑其协议以识别错误标记的样本来生成多视图预测。通过结合上述指标,我们介绍了提出的{\ it基于自动化的鲁棒训练}(SRT)方法,该方法可以用嘈杂的标签过滤样品,以减少其对训练的影响。广泛使用的公共数据集的实验表明,所提出的方法在某些类别中实现了最新的性能,而无需训练双网络。
translated by 谷歌翻译
基于生成对抗网络(GAN-IT)的图像翻译是在胸部X射线图像(AL-CXR)中精确定位异常区域的一种有前途的方法。但是,异质的未配对数据集破坏了现有的方法来提取关键特征并将正常与异常情况区分开,从而导致不准确和不稳定的Al-CXR。为了解决这个问题,我们提出了涉及注册和数据增强的两阶段gan-it的改进。对于第一阶段,我们引入了一种可逆的基于学习的注册技术,该技术实际上和合理地将未配对的数据转换为配对数据以进行学习注册图。这种新颖的方法可实现高注册性能。在第二阶段,我们将数据扩展应用于均匀注册框架上的左右肺区域来多样化异常位置,从而通过减轻显示左和右肺病变的数据分布的不平衡来进一步改善性能。我们的方法旨在应用于现有的GAN-IT模型,从而使现有的体系结构受益于翻译的关键功能。通过证明应用AL-CXR的性能在应用提出的方法时均匀提高,我们认为即使学习数据稀缺,也可以在临床环境中部署Al-CXR的GAN-IT。
translated by 谷歌翻译